5,784 research outputs found

    Quantum erasure in the presence of a thermal bath: the effects of system-environment microscopic correlations

    Full text link
    We investigate the role of the environment in a quantum erasure setup in the cavity quantum electrodynamics domain. Two slightly different schemes are analyzed. We show that the effects of the environment vary when a scheme is exchanged for another. This can be used to estimate the macroscopic parameters related to the system-environment microscopic correlations.Comment: 10 pages, 2 figure

    Photoassociative ionization of Na inside a storage ring

    Get PDF
    Motivated by recent interest in low dimensional arrays of atoms, we experimentally investigated the way cold collisional processes are affected by the geometry of the considered atomic sample. More specifically, we studied the case of photoassociative ionization (PAI) both in a storage ring where collision is more unidirectional in character and in a trap with clear undefinition of collision axis. First, creating a ring shaped trap (atomotron) we investigated two-color PAI dependence with intensity and polarization of a probing laser. The intensity dependence of the PAI rate was also measured in a magneto-optical trap presenting equivalent temperature and density conditions. Indeed, the results show that in the ring trap, the value of the PAI rate constant is much lower and does not show evidences of saturation, unlike in the case of the 3D-MOT. Cold atomic collisions in storage ring may represent new possibilities for study.Comment: 5 pages, 5 figures; Accepted by Optics Communicatio

    Analysis of the velocity field of granular hopper flow

    Full text link
    We report the analysis of radial characteristics of the flow of granular material through a conical hopper. The discharge is simulated for various orifice sizes and hopper opening angles. Velocity profiles are measured along two radial lines from the hopper cone vertex: along the main axis of the cone and along its wall. An approximate power law dependence on the distance from the orifice is observed for both profiles, although differences between them can be noted. In order to quantify these differences, we propose a Local Mass Flow index that is a promising tool in the direction of a more reliable classification of the flow regimes in hoppers

    Control of state and state entanglement with a single auxiliary subsystem

    Full text link
    We present a strategy to control the evolution of a quantum system. The novel aspect of this protocol is the use of a \emph{single auxiliary subsystem}. Two applications are given, one which allows for state preservation and another which controls the degree of entanglement of a given initial state

    Quantum critical point in the spin glass-antiferromagnetism competition in Kondo-lattice systems

    Full text link
    A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength JKJ_{K} and an interlattice quantum Ising interaction in the presence of a transverse field Γ\Gamma. The interlattice coupling is a random Gaussian distributed variable (with average −2J0/N-2J_0/N and variance 32J2/N32 J^{2}/N) while the Γ\Gamma field is introduced as a quantum mechanism to produce spin flipping. The path integral formalism is used to study this fermionic problem where the spin operators are represented by bilinear combinations of Grassmann fields. The disorder is treated within the framework of the replica trick. The free energy and the order parameters of the problem are obtained by using the static ansatz and by choosing both J0/JJ_0/J and Γ/J≈(Jk/J)2\Gamma/J \approx (J_k/J)^2 to allow, as previously, a better comparison with the experimental findings. The results indicate the presence of a SG solution at low JK/JJ_K/J and for temperature T<TfT<T_{f} (TfT_{f} is the freezing temperature). When JK/JJ_K/J is increased, a mixed phase AF+SG appears, then an AF solution and finally a Kondo state is obtained for high values of JK/JJ_{K}/J. Moreover, the behaviors of the freezing and Neel temperatures are also affected by the relationship between JKJ_{K} and the transverse field Γ\Gamma. The first one presents a slight decrease while the second one decreases towards a Quantum Critical Point (QCP). The obtained phase diagram has the same sequence as the experimental one for Ce2Au1−xCoxSi3Ce_{2}Au_{1-x}Co_{x}Si_{3}, if JKJ_{K} is assumed to increase with xx, and in addition, it also shows a qualitative agreement concerning the behavior of the freezing and the Neel temperatures.Comment: 11 pages, 3 figures, accepted for publication in J. Phys.
    • …
    corecore